
Programming Techniques
and Data Structures

M. Douglas Mcllroy*
Editor

Plane-Sweep Algorithms for
Intersecting Geometric
Figures
J. Nievergelt
E.T.H., Zurich, Switzerland
F. P. Preparata
University of Illinois

Algorithms in computational geometry are of increas-
ing importace in computer-aided design, for example, in
the layout of integrated circuits. The efficient computa-
tion of the intersection of several superimposed figures
is a basic problem. We consider plane figures defined by
points connected by straight line segments, for example,
polygons (not necessarily simple) and maps (embedded
planar graphs). The regions into which the plane is
partitioned by these intersecting figures are to be pro-
cessed in various ways such as listing the boundary of
each region in cyclic order or sweeping the interior of
each region. Let n be the total number of points of all
the figures involved and s be the total number of inter-
sections of all line segments. We present two plane-
sweep algorithms that solve the problems above; in the
general case (no convexity) in time O((n + s)log n) and
space O(n + s); when the regions of each given figure
are convex, the same can be achieved in time O(n log n
+ s) and space O(n).

CR Categories and Subject Descriptors: F.2.2 [Anal-
ysis of Algorithms and Problem Complexity]: Nonnu-
mefical Algorithms and Problems--geometricalproblems
and computations; E.1 [Data Strnctures]--arrays, lists,
trees

General Terms: Algorithms, Design, Theory
Additional Key Words and Phrases: plane-sweep al-

gorithms, intersection problems, maps, polygons

* Former editor of Programming Techniques and Data Structures,
of which Ellis Horowitz is the current editor.

This work was supported in part by the National Science Foun-
dation under Grant MCS 78-13642 and Joint Services Electronics
Program under Contract N00014-79-C-0424. This is a revised version
of Report R-863, Coordinated Science Laboratory, University of Illi-
nois, Urbana, October 1979.

Authors' Present Addresses: J. Nievergelt, Informatik, ETH, CH-
8092 Zurich, Switzerland; F, P. Preparata, Coordinated Science Lab-
oratory, University of Illinois, Urbana, Illinois 61801.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed 'for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/1000-0739 $00.75.

739

I. Introduction

One type of algorithm that emerged from recent
research in computational plane geometry promises to
be efficient for all problems to which it is applied. It
sweeps the plane "from left to right," advancing a
"front" or "cross section" from point to next point. All
processing is done at this moving front, without any
backtracking, with a horizon or look-ahead of only one
point. Algorithms of this type are often called "greedy,"
in contrast to exhaustive search algorithms that create
tentative partial results perhaps to be discarded later. An
important issue in computational complexity is to un-
derstand which problems can be solved by greedy algo-
rithms.

We present two efficient algorithms for problems that
have such diverse applications as computer graphics,
geographic data processing, and integrated circuit design
and layout. In computer graphics, plane-sweep tech-
niques play a central role in raster scan conversion and
permit a precise definition of the previously vague notion
of "coherence" (what pixels a raster line shares with the
preceding one.) Traditional scan conversion algorithms
are vector-oriented and keep track of the identity of
areas bounded by these vectors only with difficulty. The
area-oriented plane-sweep algorithm presented in this
paper shows that scan conversion can include the pro-
cessing of areas at little additional cost compared to
processing vectors only. In geographic applications, such
as the compilation of zoning maps, as well as in the
design of masks for integrated circuit fabrication, a
plane-sweep technique naturally solves the problem of
superposing two or more partitions of the plane.

Shamos and Hoey [7, 8] presented an algorithm that,
by sweeping the plane unidirectionally, determines in
time O(n log n) whether or not n line segments are free
of intersections. Bentley and Ottmann [2] have extended
this algorithm to report all s intersections of n line
segments within time O((n + s)log n). We elaborate on
this type of algorithm in two directions. First, we show
that within the same asymptotic effort, it can compute
several kinds of topological and geometric results about
the connected regions into which the plane is divided by
the line segments. For example, a plane-sweep algorithm
can output a cyclic list of all their boundary vertices
and/or segments. Second, we show that assumptions of
convexity allow one to improve these asymptotic bounds.
Specifically, we present an algorithm that computes all
s intersections of two convex maps (embedded planar
graphs with convex regions) with a total of n points in
space O(n) and time O(n log n + s).

2. Regions Formed by a Polygon

Later sections of this paper refer to several versions
of the problem of computing regions of the plane formed
by embedded graphs. Here we present in detail the

Communications October 1982
of Volume 25
the ACM Number 10

Fig. 1. A polygon of five line segments and regions. R0: V4W~ V1V.~;
R i : Va V5 VI W1V3 V2 W2 ; R2 : V2 V3 W2 .

V5

Ro

V4

version which is simplest for expository purposes: let the
given graph be a possibly self-intersecting polygon, i.e.,
a closed chain of n line segments or equivalently, a cyclic
list of n points in the plane (for an application of self-
intersecting polygons, see [6].) The reader who has un-
derstood how the algorithm works in this case will have
no difficulty in following the brief description of how it
applies to the intersection of more general plane-em-
bedded graphs.

2.1 Statement of the Problem and Terminology
Given a sequence of n points Vi = (xi, yi), i = 1,

2 n, in the plane, a polygon with vertices Vi is the
sequence of line segments V1 V2, V2 V3 Vn V1. These
n line segments in general define s intersection points Wj
= (x j , y j) , j = 1, 2 s. When s = 0, the polygon is
called simple and divides the plane into two regions, an
internal bounded region R1 and an external unbounded
region Ro. In general, s = O (n 2) and the polygon divides
the plane into r + 1 >_ 2 disjoint regions, namely, the
external unbounded region R0 and r simply connected
internal regions R1 Rr (when the polygon is non-
degenerate, r = s + 1.) Each region is itself a simple
polygon that has as its vertices some subset of (V1
V,~, W~ W ,) . The desired result is a list of all
regions, where each region is given by a cyclic list of its
vertices, starting with the rightmost vertex; the external
region in clockwise order, the internal regions in coun-
terclockwise order. Figure 1 illustrates these concepts.

As Fig. 1 suggests, we make certain assumptions of
nondegeneracy, namely, all points (the ones originally
given as well as the intersection points) are distinct, a
point lies on only those line segments on which it must
lie, and no others (e.g., V2 does not lie on V4 ~ff5). Section
4 discusses the modifications required to handle degen-
erate pictures.

The above notions are sufficient to describe the prob-
lem and its solution. In order to describe the algorithm
that computes the solution, we introduce auxiliary con-
cepts that reflect the dynamic aspects--a unidirectional
sweep of the plane. Call the originally given points Vi
and the intersection points W,. simply points, P~, P2
Pn+s, sorted in order of increasing x coordinate. (We
assume for ease of exposition that no two points have
equal x coordinates; if P i a n d Pi+e have equal x coordi-

740

Fig. 2. Figure 1 revisited. Points have been ordered according to
increasing x coordinates. Cross section y contains one interval for each
of the regions R0 and R2, and two intervals for two branches of R~ that
have split. Oriented "sticky tapes" trailing the cross section ~, are shown
as broken lines.

I Sweep Line

I R ~ ~ S t o r t Point
Bend ..o.
End Point

P~ Pz P3 P4 P5 P6
, * ,361

nates, a lexicographic ordering on the pair (x, y) suffices
for the following discussion to apply.) The x axis is being
distinguished as the direction of the plane-sweep, i.e., the
sweep line is orthogonal to the x axis. Therefore, under
our assumptions of nondegeneracy and distinct x coor-
dinates, it is natural that each point be classified uniquely
into one of four categories: start point, bend, end point,
intersection point. (See Fig. 2.)

A cross section is a vertical line in the plane along
with all the information about which line segments and
regions it cuts and in what order. The line segments cut
by a cross section partition it into intervals. We are
mainly concerned with cross sections that do not pass
through any points. The set of all (topologically equiva-
lent) cross sections that lie between two adjacent points
is called a slice. A cross section that passes through
(exactly) one point is called a transition.

As the current cross section sweeps the figure, it drags
along "sticky tapes" that hug the periphery of regions,
as shown in Fig. 2. Much of the specification of the
region-finding algorithm is concerned with properly
maintaining these tapes across transitions.

2.2 Data Structures Maintained by the Algorithm
The region-finding algorithm to be presented in Sec.

2.3 operates upon three data structures. Two of these,
the x structure and the y structure, are common to all
plane-sweep algorithms. As the line that sweeps the plane
advances in the direction of the x axis, the x structure
represents a queue of tasks to be accomplished. The y
structure represents the state of the current cross section.
The third data structure is specific to the goal to be
achieved by the plane-sweep. In order to process regions
we introduce an r structure that represents the state of
regions cut by the current cross section.

These three data structures are crucial for under-
standing the algorithm as well as for its efficiency. We
present them at a fairly abstract level, by postulating
what operations must be performed and how much time
is available for them (asymptotically in terms of the
problem parameters n and s.) We refer the reader to

Communicat ions October 1982
of Volume 25
the ACM Number 10

standard textbooks [1, 4] for concrete implementations
that realize the postulated time bounds.

2.2.1 The x structure X
At any moment, X contains those points that have

been discovered so far and are yet to be processed, sorted
according to increasing x coordinate. Points are assigned
a type according to the classification of Sec. 2.1. The x
structure is a priority queue that must support the follow-
ing operations within time bound O(log k) when it
contains k entries.

- MIN: find and remove the entry with minimal x
coordinate
- - I N S E R T : insert a new entry with given x coordinate.
Heaps or balanced trees are suitable for implementing
priority queues.

Initial content: the n originally given points, sorted,
with their classification. Final content: empty.

At each transition, the point which defines this tran-
sition is removed and, at most, two intersection points
are inserted into X. During execution a total of n + s
points move through the x structure, hence the maximal
number of entries at any given time is < n + s. Since
s = O (n 2), any operation on the x structure can be done
in time O(log(n + s)) = O(log n).

2.2.2 The y structure Y

Y contains all the information about a cross section
which is representative of its entire slice. It has an entry
for each interval of the cross section, including the
intervals that extend to y = + oo and y = - oo, and thus
it never has more than n + 1 entries. An equivalent
description is that Y has an entry for each line segment
intersected by the slice, including two sentinels. Thc line
segment entry is a linear formula that defines this seg-
ment, so that for any x, the corresponding value y = ax

+ b can be obtained in time O (1).

Initial and final content of Y: the single interval R0
bounded by line segments y ~ + oo and y = - oo.

Figure 3 shows the y structure of the slice between P4

and P5 in Fig. 2.
Y is a dictionary (see [1]) that must support operations

FIND, INSERT, DELETE, PREDECESSOR, and
SUCCESSOR within time bound O(log k) when it
contains k entries. We tailor the exact definition of these
operations to the specific use we make of them, thus
postulating dictionary operations that are easily synthe-
sized from the standard ones.

- - F I N D (P) : given a point P = (x, y, T), obtain one of
the following results depending on the type T of P.

bend: the unique line segment s whose right end point
is P;

end: the two line segments s (above) and t (below)
whose common end point is P;

start: the two adjacent line segments s (above) and t
(below) in whose interval [s, t] the point P lies;

741

Fig. 3. The y structure of the slice between points P, and P.~ in Fig. 2.
The field "P3Pr"" contains the definition of the line segment connecting
its endpoints P3 and Pr. Given an x value, this entry allows evaluation
of the corresponding y value in time O(1). Notice the entry R4(oo)
under "Name of region." It refers to a tentative region which was
created at transition P4. In a left-to-right scan of the plane it will only
become known at transition P5 that region R4 is to be identified with
region R,.

Boundary of Name of Region of Which
Intervot This Interval is 0 Part

+cO

Ro

- - R1

P2P5
Re

P5

R4 (!)

p2p6
Ro

- GO

FP-756Z

intersection: the two line segments s and t whose in-
tersection is P.

--INSERT(s, I) : given a line segment s and an interval
I adjacent to s from above or below, insert the pair
(s, 1) at the proper place determined by the y value of
s at the current x value.

- - D E L E T E (s , I): given a line segment s and an interval
I adjacent to s, delete the pair (s, I) .

- -SUCCESSOR(s) , PREDECESSOR(s): given segment
s and the current x value, return the neighboring
segment above or below s.
A dictionary with k entries can be implemented so as

to support the above operations within time O(log k) by
any of several types of balanced trees. Binary search for
a given y value is performed by evaluating the linear
formulas y = ax + b stored as segment entries along a
root-to-leaf path. By means of additional pointers a
dictionary can easily be implemented so that SUCCES-
SOR and P R E D E C E S S O R work in time O(1). For the
region-finding algorithm such a refinement yields no
overall asymptotic speed-up. For the convex map-inter-
section algorithm of Sec. 3, on the other hand, fast
SUCCESSOR and P R E D E C E S S O R operations are es-
sential.

2.2.3 The r structure R

The r structure is the key to the region-finding algo-
rithm. It integrates information about the regions and
their peripheries as it is accumulated during the unidi-
rectional sweep. It is initialized to be empty and termi-
nates empty. For any given cross section it contains
information about exactly those regions that are cut by
this cross section. Specifically, R associates with each
line segment s in the cross section two cyclic lists A (s)
and B(s) . These consist of the vertices on the boundaries
of the regions which lie above and below s, respectively.
Equivalently, with each interval determined by two ad-
jacent segments, R associates the cyclic list of the bound-

Communications October 1982
of Volume 25
the ACM Number 10

Fig. 4. The r structure of a cross section y in slice P4Ps, shown attached
to the y structure. Lists can be thought of as sticky tapes that hug the
boundaries of regions. Access to the lists is provided by two pointers
called "Tail of A (s)" and "Head of B (s)."

B(P~) = A(P~6) Y- S,ruclure

O
. P ~

R1

I p2ps R2

~ Re
i-cO

-F-I

ary vertices of that part of the region which lies to the
left of the cross section.

R is accessed from the y structure in the manner
shown in Fig. 4. Each line segment entry s in Y points to
the head of the list B(s) and to the tail ofA (s). The latter
points back to the segment entry for s in Y. Since R is
attached to Y, the two could be considered to be a single
data structure. We prefer to describe them separately,
since Y is common to most plane-sweep algorithms,
while R is specific to region identification. The above
description is a static picture of R. Section 2.3 presents
the dynamic picture of how R is updated at each transi-
tion and how region boundaries are formed.

2.3 T h e R e g i o n - F i n d i n g A l g o r i t h m

The algorithm that sweeps the plan and forms the
region boundaries has the following simple overall struc-
ture. Here X, Y, and R are the three data structures
previously described.

Procedure SWEEP:
X ,--- n given points, sorted by x coordinate
y ~ (- oo, + o0), name of region ~ Ro
R ,--~J
while X~ Odo begin

P *--- MIN(X)
TRANSITION(P)

end
end of SWEEP;

Procedure TRANSITION is the advancing mechanism
of SWEEP. It encompasses all the work involved in
processing one point P and moving the "front" from the
slice to the left of P to the slice immediately to the right
of P; in the process, it updates the corresponding data

742

Fig. 5. The situation faced by TRANSITION. The "next point" P is
of one of four types: bend, start, end, intersection.

Current Cross Next Cross
Section Section

I I

j_.__.__._.__-4, I ext Po' .

! -

\ (B,s, ' -'I !
" ~ I i

structures and builds up the result in an output structure.
TRANSITION is invoked exactly (n + s) times. We
show that one invocation uses O(log n) time and thus
establishes an O((n + s)log n) time bound on the per-
formance of SWEEP. Figure 5 illustrates the situation
when TRANSITION is invoked; given a current cross
section, update all data structures so as to represent the
new cross section correctly.

The following notation is needed to understand the
detailed description of TRANSITION presented below.
A (s) and B (s) are the cyclic lists of vertices of the regions
bordering s above and below, respectively, with the
orientation shown in Fig. 5. Lists are thought of as being
ordered from left to right; thus, for a point P and a list
L, " P * L " denotes that P has been added to L as its new
head, whereas " L * P " denotes that P is the new tail.
Similarly for two lists L1 and L2, Li*L2 denotes their
concatenation. The function INTERSECT(s, t) checks
in time O(1) whether two segments s and t intersect, and
if so, inserts the intersection point into X in time
O (log [X I). We assume that the sentinels + oo and - oo
do not intersect any line segments. I f s and t are adjacent
line segments, [s, t] denotes the interval enclosed by
them.

Procedure T R A N S I T I O N (P) breaks into four cases
depending on the type of P. We present each case
separately.

case "bend":
F I N D (P) yields the unique line segment s whose right endpoint is

P;

/ I /

Communicat ions
of
the ACM

October 1982
Volume 25
Number 10

t ~ segment starting at P
h *-- SUCCESSOR(s)
l ~-- PREDECESSOR(s)
INTERSECT(t, h)
INTERSECT(/, t)
A(t) ,--A(s),e
B(t) ~ P, B(s)
replace s with t in Y

end of case "bend";

case "end":
F IND(P) yields the two line segments s and t whose common

endpoint is P;

h ~ SUCCESSOR(s)

case "intersection":
F I N D (P) yields the two line segments s and t whose intersection is

P;

B(t)

h

AB)

B(s) ~ ~
\\, P ~1
/

rp z3s5

I ~- PREDECESSOR(t)
INTERSECT(/, h)
catenate A (t)* P* B (s)
catenate A (s)* P* B(t)
replace [t, s] by [/, h], whereby the region name of [/, h] is the

smaller of the names of [s, h] and [/, t]
DELETE(s, [s, h])
DELETE(t, [I, t])

end of case "end";

case "start":
F IND(P) yields the two adjacent line segments h and I in whose

interval [/, h] point P lies;

/ A (s)

", P ~ ? (t)

s ~ high segment starting at P
t ~-- low segment starting at P
INTERSECT(h, s)
INTERSECT(t, l)
INSERT(s, [s, h]), whereby the region name of [s, h] is inherited

from [l, h]
INSERT(t, [/, t]), whereby the region name of[/, t] is inherited from

[/, h]
modify [/, hi to represent [t, s], which receives as its region name the

name of P
initialize lists

B(t) = A (s) , - P
B(s) = A (t) ~ P

end of case "start";

h ",- SUCCESSOR(s)
l ~ PREDECESSOR(t)
INTERSECT(t, h)
INTERSECT(/, s)
catenate A (t)* P* B(s)
A (t) , - A (s) * P
B(s) ~ e ,B(t)
permute s and t, and modify the old entry [t, s] to

represent the new interval [s, t], which receives as its region
name the name of P

initialize list B(t) = A (s) ~ P
end of case "intersection".

All four cases of procedure TRANSITION are built
from the same building blocks in slightly different com-
binations. Operations FIND, INSERT, DELETE, SUC-
CESSOR, and PREDECESSOR on the y structure are
performed in time O(log I YI). Other operations on the
y structure that we have called "replace," "modify," or
"permute" do not alter the structure of Y and can be
done in time O(1). INTERSECT is the only operation
that involves the x structure (by means of INSERT into
X) and can be done in time O (log I X I). All operations
on the r structure take place at the head or tail of a list
and are done in time O(1).

We have seen in Sec. 2.2 that I X l = O(n + s) =

O (n 2) , and thus all the operations in TRANSITION can
be done in time O (log n). Since the algorithm that sweeps
the plane makes n + s transitions, it runs in time O ((n

+ s)log n) as stated earlier.

3. Intersection of Convex Maps

A map is a planar graph G embedded in the plane.
Each vertex of G is represented as a point and each edge
is represented as a straight line segment in such a way
that edges intersect only at common vertices. A map
subdivides the plane into r simply connected internal
regions R1, • • . , R r and one external unbounded region
R0. A map is convex if each internal region is convex
and the complement of the external region is convex.

Given two convex maps G1 and G2, with nl and n2
vertices, respectively, and s intersections of edges of G1
with edges of G2, we show that the set of these s inter-
sections can be computed in time O (n log n + s) and
space O (n) , where n = nl + nz. A straightforward appli-
cation of the plane-sweep algorithm described in [2],
which does not take advantage of convexity, yields this

743 Communications October 1982
of Volume 25
the ACM Number 10

Fig. 6. The domain U is shown cross-hatched.

U2 m.. Us. Us_

..'" , ~'h~.,.~ U / ." i .: "".
: i • i T ~ T ~ r ~ i /@ • - -,z,tllltllll[l .; o •

Ul ::" ...-'" \U 2
F F p - 7~1

result in time O((n + s)log n) and space O(n + s). The
most widely known geometric intersection problem that
can be solved in time O(n log n + s) is that of computing
intersections of rectangles with parallel sides; it has been
studied by Bentley and Wood [3], McCreight [5], and
others. Their results are not directly comparable to those
of this section, since the restricted nature of the geometric
objects suggests the use of specialized techniques tailored
to the problem of handling vertical and horizontal line
segments.

For i = 1, 2, let Gi be a convex map, and ei an edge
of Gi. Assume that no other edge passes through the
intersection point u of el. and e2 (degenerate cases can be
handled with no difficulty.) Define ri as the region of Gi
such that rl I'1 r2 lies entirely to the left of a vertical line
through u. (See Fig. 6.) We now define a plane domain
U as follows. Let e~ # e~ be an edge- - i f it exists--on the
boundary of r~ which intersects e2, and let e~ be analo-
gously defined. If e~ exists, define Ui as the convex hull
of ei and e~, otherwise Ui is the unbounded half-plane-
strip orthogonal to ei on the side of ri; then let U = U~
A U2 (Fig. 6).

We claim that U contains in its interior no edge, nor
any portion of edge, either of G1 o r o f 62. It suffices to
show that Ui contains in its interior no edge, nor any
portion of edge, of Gi. This is obvious when Ui is
unbounded, because in this case Ui is contained in the
unbounded exterior region of Gi; when Ui is bounded,
then Ui _Q ri by convexity, and obviously the claim holds.

In order to aid the reader's intuition we first present
an informal description of the technique. The intersec-
tion of the two maps G1 and G2 will be a map whose
vertices are of two types: (i) original vertices either of G1

or of G2, and (ii) intersections of an edge of G1 with an
edge of G2. For ease of reference, we call them V vertices
and I vertices, respectively. The plane-sweep is conven-
iently broken down into the alternation of two activities;
a phase of a primary sweep and one of a secondary
sweep. The primary sweep is characterized by a scanning
pointer that advances from V vertex to V vertex, pro-
ceeding from left to right. The processing associated with
this primary sweep is very simple and reduces to an
updating of the y structure, by deleting the edges incident
to the current vertex v from the left and inserting those
which are incident to v from the right. The visit of the I
vertices, on the other hand, is assigned to the secondary

sweep, which processes the edges issuing from v towards
the right. In contrast to the general case examined in Sec.
2, where intersections found had to be stored in the x
structure (a priority queue) for future processing, here
the convexity of the regions of G, and G2 allows a
substantial simplification, i.e., the immediate processing
of I vertices found in a march along the edges issuing
from v toward the right. It is convenient to view the
plane-sweep as characterized by a frontier line which
cuts the plane and has to its left all the ver t ices- -V
vertices and I vertices--visited by the algorithm. The
frontier is in general a polygonal line, which advances
from left to right and plays the role of the cross section
of Sec. 2. We now justify the simplification mentioned
above.

Consider a vertical cross section y (corresponding to
the current position of the scanning pointer) passing
through a vertex v of, say, G] [Fig. 7(a)] and suppose
that edges el and e2, of G1 and G2, respectively, are
adjacent in y and intersect at I vertex u. By a preceding
argument, the wedge comprised between the line 7, el,
and e2 does not contain edges, nor any portion of edges,
of Gi and Gz; therefore we immediately visit u and
complete the region of which u is the "end" point. In
addition, we advance the frontier to include u at its left
[see Fig. 7(b)] and update the y structure. This update
corresponds to exchanging the order of e~ and e2. After
that we may proceed with the verification of whether el
and e2 have further intersections with edges of G2 and
G~, respectively. To be more specific, if the edges issuing
to the right of the current V vertex are ordered counter
clockwise, we start by testing whether the first and last
elements of this sequence are involved in intersection-
producing edge adjacencies. To organize the correct visits

Fig. 7. The current sweep section advances by one point.

e2 ,.,4~,,..~ Frontier

I
i

Scanning Pointer
(a)

V

f..f,,,¢2........ Frontier

i

Scanning Pointer
(b)

FP- 7~67

744 Communicat ions
of
the ACM

October 1982
Volume 25
Number 10

Fig. 8. Illustration of the respective displacements of sweep-line and
frontier during one alternation of primary and secondary sweep. Edges
of G, are shown in solid lines, those of G2 in broken lines.

Sconning Pointer Sconning Pointer
Before Processing v ,, . / A f t e r Processing v

Frontier Before / . ~ Frontier After
Processing v ~ / / ~ / ~ Processing v

/ i /
/ l l F P - 7 3 7 0

of the intersections, the adjacencies found are naturally
placed into a first-in-first-out queue Q (in contrast to the
priority queue used in Sec. 2). Processing any adjacency
extracted from this queue may generate at most two new
intersections--producing adjacencies, which, in turn,
have to be placed into Q. It is clear, therefore, that a
phase of secondary sweep is completed when Q becomes
empty. In Fig. 8 we illustrate the positions of the scanning
pointer and of the frontier before and after one alterna-
tion of primary and secondary sweep phases.

A description of the procedure is given below. For
each vertex v (either of G1 o r G2), we denote as L(v) and
R (v) the sets of edges incident to v and lying, respectively,
to its left and to its right. For all vertices--except the left
and right extreme vertices of either map--the hypothesis
of convexity guarantees that both L(v) and R(v) are
nonempty. The y structure Y is as usual a dictionary and
supports the operations of INSERT and DELETE in
logarithmic time, and PREDECESSOR and SUCCES-
SOR in constant time. The x structure is now an array
X. For simplicity of exposition we omit the r structure,
which can be handled as in Sec. 2. Instead, we introduce
the set I of intersections heretofore found, to be imple-
mented as a linear list. The main algorithm SWEEP has
the following structure.

procedure SWEEP:
1. for each vertex v of G, t.J G2 do

sort counterclockwise the edges o f L(v) and R (v)
2. sort the vertices of G1 LJ G2 by increasing abscissa and place them

in X[I :n]
3. Y*-.-~,l~----fJ
4. for i := 1 until n - 1 do T R A N S I T I O N (X [/])

end of SWEEP;

Again, TRANSITION is the advancing mechanism
of the sweep. It performs a complete cycle (a primary
sweep followed by a secondary sweep) by advancing
both the scanning pointer and the frontier line. It uses
all data structures of SWEEP except X. In addition it
employs a first-in-first-out queue Q of edge pairs, imple-

745

mented as a linear list, for which " ~ Q " and " Q ~ " ,
respectively, denote the operations of "remove" and
"insert." The same notation applies to linear lists L ()
and R() . P denotes a generic vertex of G1 U G2.

procedure TRANSITION(P):
1. Q ~
2. PRIMARY SWEEP
3. SECONDARY SWEEP

end of TRANSITION;

procedure PRIMARY SWEEP:
2. while L(P) ~ ~ do
3. begin e ~ L(P)
4. ej ~ PRED(e)
5. DELETE(e)

end (, all edges incident to P from the left have been deleted
from Y and e~ is not incident to P *)

6. while R(P) ~ d o
7. begin e ~ R(P)
8. if e, and e belong to different maps

then Q ~ (e~, e) (*this can only happen at the start o f
the while-loop*)

9. el ~---e
10. INSERT(e)
11. ee *-- SUCC(e)

end (* all edges incident to P from the right have been inserted
into Y and e2 is not incident to P *)

12. if e2 and e belong to different maps then Q ~ (e, e2)
(* at most two pairs of edges have joined Q *)

end of PRIMARY SWEEP;

procedure SECONDARY SWEEP:
13. while Q ~ ~ do

begin
14. (el, e2) ~ Q
15. if el and e~ intersect then

begin
16. I ~-- ItA (el, e2)
17. e' ~-- PRED(el), e" ~- SUCC(e2)
18. if e' and e2 belong to different maps

then Q ~ (e', e2)
19. if el and e" belong to different maps

then Q ~ (el, e")
20. exchange (e~, e2) in Y

end (* at most two new edge pairs have joined Q *)
end

end of SECONDARY SWEEP;

It is convenient to illustrate the working of one cycle
of TRANSITION by referring to Fig. 8, whose relevant
portion is repeated in Fig. 9. Here, I vertices are num-
bered to reflect the order in which they are visited, that
is, added to set I in step 16. Loop 2-5, executed just once,
deletes edge 11 and identifies el; next, loop 6-11 inserts
/2,/3, 14, 15, and identifies e2. The pairs (el,/2) and (Is, e2)
are placed in Q in steps 8 and 12, respectively. At this
point the primary phase has initialized Q and the sec-
ondary phase starts. 1 vertex 1 is the first to be found
and it generates the pair (el, 13), whereas (16,/2) is not a
legal pair since both edges belong to the same map. By
continuing this process, the I vertices are discovered in
the displayed order and the edge pairs are input to Q in
the following order:

(e l , /2), (/5, e2), (e l , /3), (/4, e2), (/5, e3), (e l , /4), (/4, e3)

Note that some pairs input to Q do not correspond to

Communications October 1982
of Volume 25
the ACM Number 10

Fig. 9. Ilustration of the working of algorithm TRANSITION on a
portion of Fig. 8.

I!
! ' - - - q L . I

, , - -:.,.~.2---- - --~..i.~ _ j ~

. . . . - q , \ ~ _ , J e2 v"

i
i " A (-

/ II 16
ii

F P - 7 3 7 X

actual adjacencies such as (el,/4) above. However, since
adjacency is a necessary condition for intersection, no
incorrect result is produced. As to the possible ineffi-
ciency, observe that each virtually visited I vertex gen-
erates at most two pairs; hence the total number of pairs
generated is proportional to the number of I vertices.
Intersections are found while advancing on edges from
left to right and when an edge is deleted (step 5) all I
vertices on this edge have already been found. Indeed,
by referring to Fig. 7 and the pertaining discussion, one
can visualize the advancement of the frontier one I
vertex at a time, which stops when no more intersections
are found. Moreover, when edges are deleted no adja-
cencies are produced. Indeed, suppose the contrary; as-
suming that the edges incident from left to v e G1 are
being deleted, there is an edge e~ of, say, G~ right above
v and an edge of e2 of G2 right below v. The existence of
e~ implies that v is not the rightmost vertex of G~, whence
R(v) ~ ~J, i.e., there is an edge e3, issuing from v to the
right, which separates el f r o m e2.

The running time of the procedure SWEEP is easily
shown to be O(n log n). By Euler's theorem on planar
graphs, the number of edges is proportional to the num-
ber of vertices. Thus, steps 1 and 2 of SWEEP each use
time O(n log n). As to TRANSITION, loops 2-5 and 6-
11 each use time O(log n) per edge and thus time O(n
log n) globally. Loop 13-20 (secondary sweep)--as well
as steps 8 and 12--are executed O(s) times, but each
uses time O(1). While this claim is obvious for steps 8
and 12 (additions to a FIFO queue), in loop 13-20 this
performance can be achieved by specifying that access
to el and e2 in Y be implemented by pointers rather than
by standard dictionary manipulation. Thus we conclude
that the map intersection algorithm runs in time O(n log
n + s). The O(n) space bound is obvious (disregarding
list I).

4. Comparison of the Two Plane-Sweep Algorithms

In order to assess the generality of plane-sweep algor-
ithms, we cast the two instances used in Secs. 2 and 3

into a common frame. Both algorithms have the follow-
ing structure:

Algorithm SWEEP:
1. Initialize x structure

y structure
task-specific data structures, such as R or Q

2. while x structure not empty do
2.1 P ~ next point from x structure
2.2 TRANSITION(P)

where TRANSITION(P) is of the form
1. with y locate an interval in the y structure;

locally update the y structure,
2. compute some new intersections and process these.

The y structure is identical for both algorithms. It
stores the current cross section consisting of O (n)entries
in a data structure that supports the operations FIND,
INSERT, DELETE in logarithmic time and the opera-
tions PREDECESSOR and SUCCESSOR in constant
time.

The x structure is rather different for the two prob-
lems we have discussed. The simple case is illustrated by
the convex map problem; all relevant transitions are
known a priori, that is, the n = nl + n2 vertices of the
two given graphs. After they have been sorted they can
be stored in any static data structure suitable for sequen-
tial processing (i.e., the operation NEXT takes constant
time), for example, an array. The reason is that each
intersection being computed can be processed entirely
(an O(1) operation) when it is encountered. Since it need
not be considered a transition, it does not need to be
stored for deferred processing and retrieved from the x
structure (an O(log n) operation). By contrast, in the
regions-of-a-polygon problem, a computed intersection
must be treated as a transition, to be stored into and
retrieved from the x structure. This requires a dynamic
data structure, which supports the operations MIN and
INSERT and cannot be as efficient as a static data
structure. The mere fact that operations on the x struc-
ture now require logarithmic as opposed to constant
time, however, would not affect the asymptotic time
requirement of the algorithm, since this access time gets
absorbed in the n log n term. The difference between
O(n log n + s) and O((n + s)log n) is merely due to the
fact that n + s transitions move through the x structure
as opposed to n.

The two algorithms presented can be combined to
compute the regions of the intersection of two arbitrary
maps (nonconvex) in time O((n + s)log n). In order to
do this, however, the classification of points into the four
categories: "bend," "end," "start," and "intersection" of
Sec. 2.3, must be changed to deal with one general type
of point where an arbitrary number of edges meet. This
modification resolves the problem of degeneracy men-
tioned in Sec. 2.1. An intersection between more than
two edges in the same point is simply treated as a vertex
of high degree. By means of the same generalization, the
regions of the intersection of two convex maps can be
computed in time O (n log n + s).

746 Communications October 1982
of Volume 25
the ACM Number 10

Acknowledgments. We are grateful to the following
people for helpful comments during the development of
this paper: G. Beretta, H. R. Gn~igi, P. L~iuchli, T. M.
Liebling, E. M. McCreight, K. Lieberherr, J. Waldvogel,
and an anonymous referee.

Received 11/79; revised 9/81; accepted 12/81

References
I. A. Aho, J.E. Hopcroft, and J.D. U1Lman. Analysis and Design of
Computer Algorithms. Addison-Wesley, Reading, Mass., 1974.
2. J.L. Bentley and T,A. Ottmann. Algorithms for reporting and
counting geometric intersections. 1EEE Trans. Computers, C-28, 9,
(Sept. 1979) 643-647.
3. J.L. Bentley and D. Wood. An optimal worst case algorithm for
reporting intersections of rectangles. 1EEE Trans. Compters. C-29, 7,
(July 1980) 571-576.
4. D.E. Knuth. The Art of Computer Programming. Vol. 3, Sorting
and searching, Addison-Wesley, Reading, Mass., 1973.
5. E.M. McCreight. Efficient algorithms for enumerating
intersecting intervals and rectangles. Report CSL 80-9 XEROX
PARC, June 1980.
6. M.E. Newell and C.M. Sequin. The inside story on self-
intersecting polygons. LAMBDA, 1, Second Quarter 1980, 20-24.
7. M.I. Shamos and D. Hoey. Closest-point problems. 16th IEEE
Annual Symposium on Foundations of Computer Science. Berkeley,
CA. 1975, 151-162.
8. M.I. Shamos and D. Hoey. Geometric intersection problems.
17th IEEE Annual Symposium on Foundations of Computer Science.
Houston, TX. 1976, 208-215.

Technical Note
Management Science
and Operations Research

Harvey Greenberg
Editor

Comment on G a m m a Deviate
Generation

Philip A. Houle
Drake University

Recent papers have presented methods for the gen-
eration of random variables from the gamma distribution
function using a rejection method. A hazard due to
unclear notation is examined which may have led prac-
titioners to use an incorrect method.

CR Categories and Subject Descriptors: G.3.[Prob-
ability and Statistics]--random number generation, prob-
abilistic algorithms (including Monte Carlo)

General Term: Algorithm
Additional Key Words and Phrases: gamma variates,

rejection method, simulation

Tadikamalla [3] has presented a method for gener-
ating random variables from the gamma distribution
with a nonintegral shape parameter a. Pritsker and Peg-
den [2] have used the method for 1 _< a _< 5 as the
sampling procedure for gamma variables in SLAM. As
reproduced by Pritsker and Pegden, the procedure is
incorrect. The difficulty appears to stem from the choice
of symbols in Tadikamalla's presentation.

Tadikamalla has presented the method for generating
gamma variables in the following steps.

Step 1. Set m = [a], the integer portion of a; set p
= a - m, the fractional portion of a.

Step 2. Generate m independent uniform deviates
U1, U2, U3, . . . , Um and compute X = (-log(H?=1
ui))(alm).

Step 3. Generate another uniform deviate r.
Step 4. If r _< T(X) = (X/cO p exp(-p[(X/a) - 1]),

return X as the required gamma variate. Otherwise go to
Step 2.

747

Author's Present Address: Philip A. Houle, Computer Information
Systems, College of Business Administration, Drake University, Des
Moines, IA 50311.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/1000-0747 $00.75.

Communications October 1982
of Volume 25
the ACM Number 10

