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I. Introduction 

One type of algorithm that emerged from recent 
research in computational plane geometry promises to 
be efficient for all problems to which it is applied. It 
sweeps the plane "from left to right," advancing a 
"front" or "cross section" from point to next point. All 
processing is done at this moving front, without any 
backtracking, with a horizon or look-ahead of only one 
point. Algorithms of this type are often called "greedy," 
in contrast to exhaustive search algorithms that create 
tentative partial results perhaps to be discarded later. An 
important issue in computational complexity is to un- 
derstand which problems can be solved by greedy algo- 
rithms. 

We present two efficient algorithms for problems that 
have such diverse applications as computer graphics, 
geographic data processing, and integrated circuit design 
and layout. In computer graphics, plane-sweep tech- 
niques play a central role in raster scan conversion and 
permit a precise definition of the previously vague notion 
of "coherence" (what pixels a raster line shares with the 
preceding one.) Traditional scan conversion algorithms 
are vector-oriented and keep track of the identity of 
areas bounded by these vectors only with difficulty. The 
area-oriented plane-sweep algorithm presented in this 
paper shows that scan conversion can include the pro- 
cessing of areas at little additional cost compared to 
processing vectors only. In geographic applications, such 
as the compilation of zoning maps, as well as in the 
design of masks for integrated circuit fabrication, a 
plane-sweep technique naturally solves the problem of 
superposing two or more partitions of the plane. 

Shamos and Hoey [7, 8] presented an algorithm that, 
by sweeping the plane unidirectionally, determines in 
time O(n log n) whether or not n line segments are free 
of intersections. Bentley and Ottmann [2] have extended 
this algorithm to report all s intersections of n line 
segments within time O((n + s)log n). We elaborate on 
this type of algorithm in two directions. First, we show 
that within the same asymptotic effort, it can compute 
several kinds of topological and geometric results about 
the connected regions into which the plane is divided by 
the line segments. For example, a plane-sweep algorithm 
can output a cyclic list of all their boundary vertices 
and/or segments. Second, we show that assumptions of 
convexity allow one to improve these asymptotic bounds. 
Specifically, we present an algorithm that computes all 
s intersections of two convex maps (embedded planar 
graphs with convex regions) with a total of n points in 
space O(n) and time O(n log n + s). 

2. Regions Formed by a Polygon 

Later sections of this paper refer to several versions 
of the problem of computing regions of the plane formed 
by embedded graphs. Here we present in detail the 
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Fig. 1. A polygon of  five line segments and regions. R0: V4W~ V1V.~; 
R i : Va V5 VI W1V3 V2 W2 ; R2 : V2 V3 W2 . 

V5 

Ro 

V4 

version which is simplest for expository purposes: let the 
given graph be a possibly self-intersecting polygon, i.e., 
a closed chain of n line segments or equivalently, a cyclic 
list of n points in the plane (for an application of self- 
intersecting polygons, see [6].) The reader who has un- 
derstood how the algorithm works in this case will have 
no difficulty in following the brief description of how it 
applies to the intersection of more general plane-em- 
bedded graphs. 

2.1 Statement of the Problem and Terminology 
Given a sequence of n points Vi = (xi, yi), i = 1, 

2 . . . . .  n, in the plane, a polygon with vertices Vi is the 
sequence of line segments V1 V2, V2 V3 . . . . .  Vn V1. These 
n line segments in general define s intersection points Wj 
= (x j ,  y j ) ,  j = 1, 2 . . . . .  s. When s = 0, the polygon is 
called simple and divides the plane into two regions, an 
internal bounded region R1 and an external unbounded 
region Ro. In general, s = O ( n  2) and the polygon divides 
the plane into r + 1 >_ 2 disjoint regions, namely, the 
external unbounded region R0 and r simply connected 
internal regions R1 . . . . .  Rr  (when the polygon is non- 
degenerate, r = s + 1.) Each region is itself a simple 
polygon that has as its vertices some subset of (V1 . . . . .  
V,~, W~ . . . . .  W , ) .  The desired result is a list of all 
regions, where each region is given by a cyclic list of its 
vertices, starting with the rightmost vertex; the external 
region in clockwise order, the internal regions in coun- 
terclockwise order. Figure 1 illustrates these concepts. 

As Fig. 1 suggests, we make certain assumptions of 
nondegeneracy, namely, all points (the ones originally 
given as well as the intersection points) are distinct, a 
point lies on only those line segments on which it must 
lie, and no others (e.g., V2 does not lie on V4 ~ff5). Section 
4 discusses the modifications required to handle degen- 
erate pictures. 

The above notions are sufficient to describe the prob- 
lem and its solution. In order to describe the algorithm 
that computes the solution, we introduce auxiliary con- 
cepts that reflect the dynamic aspects--a unidirectional 
sweep of the plane. Call the originally given points Vi 
and the intersection points W,. simply points, P~, P2 . . . . .  
Pn+s, sorted in order of increasing x coordinate. (We 
assume for ease of exposition that no two points have 
equal x coordinates; if P i  a n d  Pi+e have equal x coordi- 
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Fig. 2. Figure 1 revisited. Points have been ordered according to 
increasing x coordinates. Cross section y contains one interval for each 
of  the regions R0 and R2, and two intervals for two branches of R~ that 
have split. Oriented "sticky tapes" trailing the cross section ~, are shown 
as broken lines. 

I Sweep Line 

I R ~  ~ S t o r t  Point 
Bend ..o. 
End Point 

P~ Pz P3 P4 P5 P6 
, *  ,361 

nates, a lexicographic ordering on the pair (x, y) suffices 
for the following discussion to apply.) The x axis is being 
distinguished as the direction of the plane-sweep, i.e., the 
sweep line is orthogonal to the x axis. Therefore, under 
our assumptions of nondegeneracy and distinct x coor- 
dinates, it is natural that each point be classified uniquely 
into one of four categories: start point, bend, end point, 
intersection point. (See Fig. 2.) 

A cross section is a vertical line in the plane along 
with all the information about which line segments and 
regions it cuts and in what order. The line segments cut 
by a cross section partition it into intervals. We are 
mainly concerned with cross sections that do not pass 
through any points. The set of all (topologically equiva- 
lent) cross sections that lie between two adjacent points 
is called a slice. A cross section that passes through 
(exactly) one point is called a transition. 

As the current cross section sweeps the figure, it drags 
along "sticky tapes" that hug the periphery of regions, 
as shown in Fig. 2. Much of the specification of the 
region-finding algorithm is concerned with properly 
maintaining these tapes across transitions. 

2.2 Data Structures Maintained by the Algorithm 
The region-finding algorithm to be presented in Sec. 

2.3 operates upon three data structures. Two of these, 
the x structure and the y structure, are common to all 
plane-sweep algorithms. As the line that sweeps the plane 
advances in the direction of the x axis, the x structure 
represents a queue of tasks to be accomplished. The y 
structure represents the state of the current cross section. 
The third data structure is specific to the goal to be 
achieved by the plane-sweep. In order to process regions 
we introduce an r structure that represents the state of 
regions cut by the current cross section. 

These three data structures are crucial for under- 
standing the algorithm as well as for its efficiency. We 
present them at a fairly abstract level, by postulating 
what operations must be performed and how much time 
is available for them (asymptotically in terms of the 
problem parameters n and s.) We refer the reader to 
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standard textbooks [1, 4] for concrete implementations 
that realize the postulated time bounds. 

2.2.1 The x structure X 
At any moment,  X contains those points that have 

been discovered so far and are yet to be processed, sorted 
according to increasing x coordinate. Points are assigned 
a type according to the classification of  Sec. 2.1. The x 
structure is a priority queue that must support the follow- 
ing operations within time bound O(log k) when it 
contains k entries. 

- MIN: find and remove the entry with minimal x 
coordinate 
- - I N S E R T :  insert a new entry with given x coordinate. 
Heaps or balanced trees are suitable for implementing 
priority queues. 

Initial content: the n originally given points, sorted, 
with their classification. Final content: empty. 

At each transition, the point which defines this tran- 
sition is removed and, at most, two intersection points 
are inserted into X. During execution a total of  n + s 
points move through the x structure, hence the maximal 
number  of  entries at any given time is < n + s. Since 
s = O (n 2), any operation on the x structure can be done 
in time O(log(n + s)) = O(log n). 

2.2.2 The y structure Y 

Y contains all the information about a cross section 
which is representative of  its entire slice. It has an entry 
for each interval of  the cross section, including the 
intervals that extend to y = + oo and y = - oo, and thus 
it never has more than n + 1 entries. An equivalent 
description is that Y has an entry for each line segment 
intersected by the slice, including two sentinels. Thc line 
segment entry is a linear formula that defines this seg- 
ment, so that for any x, the corresponding value y = ax 

+ b can be obtained in time O (1). 

Initial and final content of  Y: the single interval R0 
bounded by line segments y ~ + oo and y = - oo. 

Figure 3 shows the y structure of  the slice between P4 

and P5 in Fig. 2. 
Y is a dictionary (see [1]) that must support operations 

FIND,  INSERT,  DELETE,  PREDECESSOR,  and 
SUCCESSOR within time bound O(log k) when it 
contains k entries. We tailor the exact definition of  these 
operations to the specific use we make of  them, thus 
postulating dictionary operations that are easily synthe- 
sized from the standard ones. 

- - F I N D ( P ) :  given a point P = (x, y, T), obtain one of  
the following results depending on the type T of  P. 

bend: the unique line segment s whose right end point 
is P; 

end: the two line segments s (above) and t (below) 
whose common end point is P; 

start: the two adjacent line segments s (above) and t 
(below) in whose interval [s, t] the point P lies; 
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Fig. 3. The y structure of the slice between points P, and P.~ in Fig. 2. 
The field "P3Pr"" contains the definition of the line segment connecting 
its endpoints P3 and Pr. Given an x value, this entry allows evaluation 
of the corresponding y value in time O(1). Notice the entry R4(oo) 
under "Name of region." It refers to a tentative region which was 
created at transition P4. In a left-to-right scan of the plane it will only 
become known at transition P5 that region R4 is to be identified with 
region R,. 

Boundary of Name of Region of Which 
Intervot This Interval is 0 Part 

+cO 

Ro 

- -  R1 

P2P5 
Re 

P5 

R4 (!) 

p2p6 
Ro 

- GO 

FP-756Z 

intersection: the two line segments s and t whose in- 
tersection is P. 

--INSERT(s, I ) :  given a line segment s and an interval 
I adjacent to s from above or below, insert the pair 
(s, 1) at the proper place determined by the y value of  
s at the current x value. 

- - D E L E T E ( s ,  I):  given a line segment s and an interval 
I adjacent to s, delete the pair (s, I ) .  

- -SUCCESSOR(s ) ,  PREDECESSOR(s):  given segment 
s and the current x value, return the neighboring 
segment above or below s. 
A dictionary with k entries can be implemented so as 

to support the above operations within time O(log k) by 
any of  several types of  balanced trees. Binary search for 
a given y value is performed by evaluating the linear 
formulas y = ax + b stored as segment entries along a 
root-to-leaf path. By means of  additional pointers a 
dictionary can easily be implemented so that SUCCES- 
SOR and P R E D E C E S S O R  work in time O(1). For the 
region-finding algorithm such a refinement yields no 
overall asymptotic speed-up. For the convex map-inter- 
section algorithm of Sec. 3, on the other hand, fast 
SUCCESSOR and P R E D E C E S S O R  operations are es- 
sential. 

2.2.3 The r structure R 

The r structure is the key to the region-finding algo- 
rithm. It integrates information about the regions and 
their peripheries as it is accumulated during the unidi- 
rectional sweep. It is initialized to be empty and termi- 
nates empty. For any given cross section it contains 
information about exactly those regions that are cut by 
this cross section. Specifically, R associates with each 
line segment s in the cross section two cyclic lists A (s) 
and B(s) .  These consist of  the vertices on the boundaries 
of  the regions which lie above and below s, respectively. 
Equivalently, with each interval determined by two ad- 
jacent segments, R associates the cyclic list of  the bound- 

Communications October 1982 
of Volume 25 
the ACM Number 10 



Fig. 4. The r structure of  a cross section y in slice P4Ps, shown attached 
to the y structure. Lists can be thought  of  as sticky tapes that hug  the 
boundaries of  regions. Access to the lists is provided by two pointers 
called "Tail of  A (s)" and "Head of  B (s)." 

B(P~)  = A(P~6) Y- S,ruclure 

O 
. . . . .  P ~  

R1 

I p2ps R2 

~ Re 
i-cO 

-F-I 

ary vertices of that part of the region which lies to the 
left of  the cross section. 

R is accessed from the y structure in the manner 
shown in Fig. 4. Each line segment entry s in Y points to 
the head of  the list B(s) and to the tail ofA (s). The latter 
points back to the segment entry for s in Y. Since R is 
attached to Y, the two could be considered to be a single 
data structure. We prefer to describe them separately, 
since Y is common to most plane-sweep algorithms, 
while R is specific to region identification. The above 
description is a static picture of R. Section 2.3 presents 
the dynamic picture of  how R is updated at each transi- 
tion and how region boundaries are formed. 

2.3  T h e  R e g i o n - F i n d i n g  A l g o r i t h m  

The algorithm that sweeps the plan and forms the 
region boundaries has the following simple overall struc- 
ture. Here X, Y, and R are the three data structures 
previously described. 

Procedure SWEEP: 
X ,--- n given points, sorted by x coordinate 
y ~ ( -  oo, + o0), name of  region ~ Ro 
R ,--~J 
while X~ Odo begin 

P *--- MIN(X) 
TRANSITION(P) 

end 
end of SWEEP; 

Procedure TRANSITION is the advancing mechanism 
of  SWEEP. It encompasses all the work involved in 
processing one point P and moving the "front"  from the 
slice to the left of  P to the slice immediately to the right 
of  P; in the process, it updates the corresponding data 
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Fig. 5. The situation faced by TRANSITION.  The "next point" P is 
of  one of four types: bend, start, end, intersection. 

Current Cross Next Cross 
Section Section 

I I 

j_.__.__._.__-4, I ext Po' . 

! - 

\ (B,s, ' -'I ! 
" ~  I i . . . . . .  

structures and builds up the result in an output structure. 
TRANSITION is invoked exactly (n + s) times. We 
show that one invocation uses O(log n) time and thus 
establishes an O((n + s)log n) time bound on the per- 
formance of  SWEEP. Figure 5 illustrates the situation 
when TRANSITION is invoked; given a current cross 
section, update all data structures so as to represent the 
new cross section correctly. 

The following notation is needed to understand the 
detailed description of  TRANSITION presented below. 
A (s) and B (s) are the cyclic lists of vertices of the regions 
bordering s above and below, respectively, with the 
orientation shown in Fig. 5. Lists are thought of as being 
ordered from left to right; thus, for a point P and a list 
L, " P * L "  denotes that P has been added to L as its new 
head, whereas " L * P "  denotes that P is the new tail. 
Similarly for two lists L1 and L2, Li*L2 denotes their 
concatenation. The function INTERSECT(s,  t) checks 
in time O(1) whether two segments s and t intersect, and 
if so, inserts the intersection point into X in time 
O (log [ X I). We assume that the sentinels + oo and - oo 
do not intersect any line segments. I f s  and t are adjacent 
line segments, [s, t] denotes the interval enclosed by 
them. 

Procedure T R A N S I T I O N ( P )  breaks into four cases 
depending on the type of  P. We present each case 
separately. 

case "bend":  
F I N D ( P )  yields the unique line segment s whose right endpoint is 

P; 

/ I / 

Communicat ions  
of 
the ACM 

October 1982 
Volume 25 
Number  10 



t ~ segment starting at P 
h *-- SUCCESSOR(s) 
l ~-- PREDECESSOR(s) 
INTERSECT(t,  h) 
INTERSECT(/,  t) 
A(t) ,--A(s),e 
B(t)  ~ P, B(s) 
replace s with t in Y 

end of case "bend"; 

case "end": 
F IND(P)  yields the two line segments s and t whose common 

endpoint is P; 

h ~ SUCCESSOR(s) 

case "intersection": 
F I N D ( P )  yields the two line segments s and t whose intersection is 

P; 

B(t) 

h 

AB) 

B(s) ~ ~  
\\, P ~1 
/ 

rp z3s5 

I ~- PREDECESSOR(t)  
INTERSECT(/,  h) 
catenate A ( t )* P* B ( s ) 
catenate A ( s)* P* B(  t ) 
replace [t, s] by [/, h], whereby the region name of [/, h] is the 

smaller of the names of [s, h] and [/, t] 
DELETE(s, [s, h]) 
DELETE(t, [I, t]) 

end of case "end";  

case "start": 
F IND(P)  yields the two adjacent line segments h and I in whose 

interval [/, h] point P lies; 

/ A ( s )  

", P ~ ? ( t )  

s ~ high segment starting at P 
t ~-- low segment starting at P 
INTERSECT(h, s) 
INTERSECT(t,  l) 
INSERT(s, [s, h]), whereby the region name of  [s, h] is inherited 

from [l, h ] 
INSERT(t, [/, t]), whereby the region name of[/,  t] is inherited from 

[/, h] 
modify [/, hi to represent [t, s], which receives as its region name the 

name of P 
initialize lists 

B(t)  = A (s) , -  P 
B(s) = A (t) ~ P 

end of case "start"; 

h ",- SUCCESSOR(s) 
l ~ PREDECESSOR(t)  
INTERSECT(t,  h) 
INTERSECT(/,  s) 
catenate A (t)* P* B(s)  
A ( t )  , - A ( s ) * P  
B(s) ~ e ,B(t)  
permute s and t, and modify the old entry [t, s] to 

represent the new interval [s, t], which receives as its region 
name the name of P 

initialize list B( t )  = A (s) ~ P 
end of  case "intersection". 

All four cases of procedure TRANSITION are built 
from the same building blocks in slightly different com- 
binations. Operations FIND, INSERT, DELETE, SUC- 
CESSOR, and PREDECESSOR on the y structure are 
performed in time O(log I YI). Other operations on the 
y structure that we have called "replace," "modify," or 
"permute" do not alter the structure of  Y and can be 
done in time O(1). INTERSECT is the only operation 
that involves the x structure (by means of  INSERT into 
X) and can be done in time O (log I X I ). All operations 
on the r structure take place at the head or tail of  a list 
and are done in time O(1). 

We have seen in Sec. 2.2 that I X l  = O(n + s) = 

O ( n 2 ) ,  and thus all the operations in TRANSITION can 
be done in time O (log n). Since the algorithm that sweeps 
the plane makes n + s transitions, it runs in time O ( ( n  

+ s)log n) as stated earlier. 

3. Intersection of Convex Maps 

A map is a planar graph G embedded in the plane. 
Each vertex of  G is represented as a point and each edge 
is represented as a straight line segment in such a way 
that edges intersect only at common vertices. A map 
subdivides the plane into r simply connected internal 
regions R1, • • . ,  R r  and one external unbounded region 
R0. A map is convex if each internal region is convex 
and the complement of  the external region is convex. 

Given two convex maps G1 and G2, with nl and n2 
vertices, respectively, and s intersections of  edges of  G1 
with edges of  G2, we show that the set of  these s inter- 
sections can be computed in time O ( n  log n + s) and 
space O ( n ) ,  where n = nl + nz. A straightforward appli- 
cation of  the plane-sweep algorithm described in [2], 
which does not take advantage of  convexity, yields this 
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Fig. 6. The domain U is shown cross-hatched. 
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result in time O((n + s)log n) and space O(n + s). The 
most widely known geometric intersection problem that 
can be solved in time O(n log n + s) is that of computing 
intersections of rectangles with parallel sides; it has been 
studied by Bentley and Wood [3], McCreight [5], and 
others. Their results are not directly comparable to those 
of this section, since the restricted nature of  the geometric 
objects suggests the use of specialized techniques tailored 
to the problem of handling vertical and horizontal line 
segments. 

For i = 1, 2, let Gi be a convex map, and ei an edge 
of  Gi. Assume that no other edge passes through the 
intersection point u of el. and e2 (degenerate cases can be 
handled with no difficulty.) Define ri as the region of  Gi 
such that rl I'1 r2 lies entirely to the left of a vertical line 
through u. (See Fig. 6.) We now define a plane domain 
U as follows. Let e~ # e~ be an edge- - i f  it exists--on the 
boundary of r~ which intersects e2, and let e~ be analo- 
gously defined. If  e~ exists, define Ui as the convex hull 
of  ei and e~, otherwise Ui is the unbounded half-plane- 
strip orthogonal to ei on the side of ri; then let U = U~ 
A U2 (Fig. 6). 

We claim that U contains in its interior no edge, nor 
any portion of  edge, either of G1 o r  o f  62.  It suffices to 
show that Ui contains in its interior no edge, nor any 
portion of edge, of Gi. This is obvious when Ui is 
unbounded, because in this case Ui is contained in the 
unbounded exterior region of  Gi; when Ui is bounded, 
then Ui _Q ri by convexity, and obviously the claim holds. 

In order to aid the reader's intuition we first present 
an informal description of  the technique. The intersec- 
tion of  the two maps G1 and G2 will be a map whose 
vertices are of  two types: (i) original vertices either of G1 

or of G2, and (ii) intersections of an edge of G1 with an 
edge of  G2. For ease of  reference, we call them V vertices 
and I vertices, respectively. The plane-sweep is conven- 
iently broken down into the alternation of two activities; 
a phase of a primary sweep and one of  a secondary 
sweep. The primary sweep is characterized by a scanning 
pointer that advances from V vertex to V vertex, pro- 
ceeding from left to right. The processing associated with 
this primary sweep is very simple and reduces to an 
updating of the y structure, by deleting the edges incident 
to the current vertex v from the left and inserting those 
which are incident to v from the right. The visit of  the I 
vertices, on the other hand, is assigned to the secondary 

sweep, which processes the edges issuing from v towards 
the right. In contrast to the general case examined in Sec. 
2, where intersections found had to be stored in the x 
structure (a priority queue) for future processing, here 
the convexity of the regions of  G, and G2 allows a 
substantial simplification, i.e., the immediate processing 
of  I vertices found in a march along the edges issuing 
from v toward the right. It is convenient to view the 
plane-sweep as characterized by a frontier line which 
cuts the plane and has to its left all the ver t ices- -V 
vertices and I vertices--visited by the algorithm. The 
frontier is in general a polygonal line, which advances 
from left to right and plays the role of  the cross section 
of Sec. 2. We now justify the simplification mentioned 
above. 

Consider a vertical cross section y (corresponding to 
the current position of  the scanning pointer) passing 
through a vertex v of, say, G] [Fig. 7(a)] and suppose 
that edges el and e2, of  G1 and G2, respectively, are 
adjacent in y and intersect at I vertex u. By a preceding 
argument, the wedge comprised between the line 7, el, 
and e2 does not contain edges, nor any portion of  edges, 
of Gi and Gz; therefore we immediately visit u and 
complete the region of  which u is the "end"  point. In 
addition, we advance the frontier to include u at its left 
[see Fig. 7(b)] and update the y structure. This update 
corresponds to exchanging the order of  e~ and e2. After 
that we may proceed with the verification of whether el 
and e2 have further intersections with edges of G2 and 
G~, respectively. To be more specific, if the edges issuing 
to the right of  the current V vertex are ordered counter 
clockwise, we start by testing whether the first and last 
elements of  this sequence are involved in intersection- 
producing edge adjacencies. To organize the correct visits 

Fig. 7. The current sweep section advances by one point. 

e2 ,.,4~,,..~ Frontier 

I 
i 

Scanning Pointer 
(a) 

V 

f..f,,,¢2........ Frontier 

i 

Scanning Pointer 
(b) 

FP- 7~67 

744 Communicat ions  
of  
the ACM 

October 1982 
Volume 25 
Number  10 



Fig. 8. Illustration of the respective displacements of  sweep-line and 
frontier during one alternation of  primary and secondary sweep. Edges 
of  G, are shown in solid lines, those of  G2 in broken lines. 
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Before Processing v ,, . / A f t e r  Processing v 
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of the intersections, the adjacencies found are naturally 
placed into a first-in-first-out queue Q (in contrast to the 
priority queue used in Sec. 2). Processing any adjacency 
extracted from this queue may generate at most two new 
intersections--producing adjacencies, which, in turn, 
have to be placed into Q. It is clear, therefore, that a 
phase of secondary sweep is completed when Q becomes 
empty. In Fig. 8 we illustrate the positions of  the scanning 
pointer and of  the frontier before and after one alterna- 
tion of  primary and secondary sweep phases. 

A description of  the procedure is given below. For 
each vertex v (either of  G1 o r  G2), we denote as L(v) and 
R (v) the sets of  edges incident to v and lying, respectively, 
to its left and to its right. For all vertices--except the left 
and right extreme vertices of  either map--the hypothesis 
of  convexity guarantees that both L(v) and R(v) are 
nonempty. The y structure Y is as usual a dictionary and 
supports the operations of  INSERT and DELETE in 
logarithmic time, and PREDECESSOR and SUCCES- 
SOR in constant time. The x structure is now an array 
X. For simplicity of  exposition we omit the r structure, 
which can be handled as in Sec. 2. Instead, we introduce 
the set I of intersections heretofore found, to be imple- 
mented as a linear list. The main algorithm SWEEP has 
the following structure. 

procedure SWEEP: 
1. for each vertex v of  G, t.J G2 do 

sort counterclockwise the edges o f  L(v) and R (v) 
2. sort the vertices of  G1 LJ G2 by increasing abscissa and place them 

in X[I :n] 
3. Y*-.-~,l~----fJ 
4. for i := 1 until n - 1 do T R A N S I T I O N ( X [ / ] )  

end of  SWEEP; 

Again, TRANSITION is the advancing mechanism 
of  the sweep. It performs a complete cycle (a primary 
sweep followed by a secondary sweep) by advancing 
both the scanning pointer and the frontier line. It uses 
all data structures of  SWEEP except X. In addition it 
employs a first-in-first-out queue Q of  edge pairs, imple- 
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mented as a linear list, for which " ~ Q "  and " Q ~ " ,  
respectively, denote the operations of "remove" and 
"insert." The same notation applies to linear lists L ( )  
and R() .  P denotes a generic vertex of G1 U G2. 

procedure TRANSITION( P): 
1. Q ~  
2. PRIMARY SWEEP 
3. SECONDARY SWEEP 

end of  TRANSITION; 

procedure PRIMARY SWEEP: 
2. while L(P) ~ ~ do 
3. begin e ~ L(P) 
4. ej ~ PRED(e) 
5. DELETE(e) 

end (, all edges incident to P from the left have been deleted 
from Y and e~ is not incident to P *) 

6. while R(P) ~ d o  
7. begin e ~ R(P) 
8. if e, and e belong to different maps 

then Q ~ (e~, e) (*this can only happen at the start o f  
the while-loop* ) 

9. el ~---e 
10. INSERT(e) 
11. ee *-- SUCC(e) 

end (* all edges incident to P from the right have been inserted 
into Y and e2 is not incident to P *) 

12. if e2 and e belong to different maps then Q ~ (e, e2) 
(* at most two pairs of  edges have joined Q *) 

end of  PRIMARY SWEEP; 

procedure SECONDARY SWEEP: 
13. while Q ~ ~ do 

begin 
14. (el, e2) ~ Q 
15. if el and e~ intersect then 

begin 
16. I ~-- ItA (el, e2) 
17. e' ~-- PRED(el ), e" ~- SUCC(e2) 
18. if e' and e2 belong to different maps 

then Q ~ (e', e2) 
19. if el and e" belong to different maps 

then Q ~ (el, e" ) 
20. exchange (e~, e2) in Y 

end (* at most two new edge pairs have joined Q *) 
end 

end of  SECONDARY SWEEP; 

It is convenient to illustrate the working of one cycle 
of TRANSITION by referring to Fig. 8, whose relevant 
portion is repeated in Fig. 9. Here, I vertices are num- 
bered to reflect the order in which they are visited, that 
is, added to set I in step 16. Loop 2-5, executed just once, 
deletes edge 11 and identifies el; next, loop 6-11 inserts 
/2,/3, 14, 15, and identifies e2. The pairs (el,/2) and (Is, e2) 
are placed in Q in steps 8 and 12, respectively. At this 
point the primary phase has initialized Q and the sec- 
ondary phase starts. 1 vertex 1 is the first to be found 
and it generates the pair (el, 13), whereas (16,/2) is not a 
legal pair since both edges belong to the same map. By 
continuing this process, the I vertices are discovered in 
the displayed order and the edge pairs are input to Q in 
the following order: 

( e l ,  /2), (/5, e2), ( e l ,  /3), (/4, e2), (/5, e3), ( e l ,  /4), (/4, e3) 

Note that some pairs input to Q do not correspond to 
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Fig. 9. Ilustration of the working of algorithm TRANSITION on a 
portion of Fig. 8. 
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actual adjacencies such as (el,/4) above. However, since 
adjacency is a necessary condition for intersection, no 
incorrect result is produced. As to the possible ineffi- 
ciency, observe that each virtually visited I vertex gen- 
erates at most two pairs; hence the total number of  pairs 
generated is proportional to the number of I vertices. 
Intersections are found while advancing on edges from 
left to right and when an edge is deleted (step 5) all I 
vertices on this edge have already been found. Indeed, 
by referring to Fig. 7 and the pertaining discussion, one 
can visualize the advancement of the frontier one I 
vertex at a time, which stops when no more intersections 
are found. Moreover, when edges are deleted no adja- 
cencies are produced. Indeed, suppose the contrary; as- 
suming that the edges incident from left to v e G1 are 
being deleted, there is an edge e~ of, say, G~ right above 
v and an edge of e2 of  G2 right below v. The existence of  
e~ implies that v is not the rightmost vertex of  G~, whence 
R(v) ~ ~J, i.e., there is an edge e3, issuing from v to the 
right, which separates el f r o m  e2. 

The running time of  the procedure SWEEP is easily 
shown to be O(n log n). By Euler's theorem on planar 
graphs, the number of  edges is proportional to the num- 
ber of  vertices. Thus, steps 1 and 2 of  SWEEP each use 
time O(n log n). As to TRANSITION,  loops 2-5 and 6- 
11 each use time O(log n) per edge and thus time O(n 
log n) globally. Loop 13-20 (secondary sweep)--as well 
as steps 8 and 12--are executed O(s) times, but each 
uses time O(1). While this claim is obvious for steps 8 
and 12 (additions to a FIFO queue), in loop 13-20 this 
performance can be achieved by specifying that access 
to el and e2 in Y be implemented by pointers rather than 
by standard dictionary manipulation. Thus we conclude 
that the map intersection algorithm runs in time O(n log 
n + s). The O(n) space bound is obvious (disregarding 
list I). 

4. Comparison of the Two Plane-Sweep Algorithms 

In order to assess the generality of  plane-sweep algor- 
ithms, we cast the two instances used in Secs. 2 and 3 

into a common frame. Both algorithms have the follow- 
ing structure: 

Algorithm SWEEP: 
1. Initialize x structure 

y structure 
task-specific data structures, such as R or Q 

2. while x structure not empty do 
2.1 P ~ next point from x structure 
2.2 TRANSITION(P)  

where TRANSITION(P)  is of the form 
1. with y locate an interval in the y structure; 

locally update the y structure, 
2. compute some new intersections and process these. 

The y structure is identical for both algorithms. It 
stores the current cross section consisting of  O (n)entries 
in a data structure that supports the operations FIND,  
INSERT, DELETE in logarithmic time and the opera- 
tions PREDECESSOR and SUCCESSOR in constant 
time. 

The x structure is rather different for the two prob- 
lems we have discussed. The simple case is illustrated by 
the convex map problem; all relevant transitions are 
known a priori, that is, the n = nl  + n2 vertices of  the 
two given graphs. After they have been sorted they can 
be stored in any static data structure suitable for sequen- 
tial processing (i.e., the operation NEXT takes constant 
time), for example, an array. The reason is that each 
intersection being computed can be processed entirely 
(an O(1) operation) when it is encountered. Since it need 
not be considered a transition, it does not need to be 
stored for deferred processing and retrieved from the x 
structure (an O(log n) operation). By contrast, in the 
regions-of-a-polygon problem, a computed intersection 
must be treated as a transition, to be stored into and 
retrieved from the x structure. This requires a dynamic 
data structure, which supports the operations MIN and 
INSERT and cannot be as efficient as a static data 
structure. The mere fact that operations on the x struc- 
ture now require logarithmic as opposed to constant 
time, however, would not affect the asymptotic time 
requirement of  the algorithm, since this access time gets 
absorbed in the n log n term. The difference between 
O(n log n + s) and O((n + s)log n) is merely due to the 
fact that n + s transitions move through the x structure 
as opposed to n. 

The two algorithms presented can be combined to 
compute the regions of the intersection of  two arbitrary 
maps (nonconvex) in time O((n + s)log n). In order to 
do this, however, the classification of  points into the four 
categories: "bend," "end," "start," and "intersection" of  
Sec. 2.3, must be changed to deal with one general type 
of  point where an arbitrary number of  edges meet. This 
modification resolves the problem of degeneracy men- 
tioned in Sec. 2.1. An intersection between more than 
two edges in the same point is simply treated as a vertex 
of  high degree. By means of  the same generalization, the 
regions of the intersection of  two convex maps can be 
computed in time O (n log n + s). 
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Comment  on G a m m a  Deviate  
Generation 
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Drake University 

Recent papers have presented methods for the gen- 
eration of random variables from the gamma distribution 
function using a rejection method. A hazard due to 
unclear notation is examined which may have led prac- 
titioners to use an incorrect method. 

CR Categories and Subject Descriptors: G.3.[Prob- 
ability and Statistics]--random number generation, prob- 
abilistic algorithms (including Monte Carlo) 

General Term: Algorithm 
Additional Key Words and Phrases: gamma variates, 

rejection method, simulation 

Tadikamalla [3] has presented a method for gener- 
ating random variables from the gamma distribution 
with a nonintegral shape parameter a. Pritsker and Peg- 
den [2] have used the method for 1 _< a _< 5 as the 
sampling procedure for gamma variables in SLAM. As 
reproduced by Pritsker and Pegden, the procedure is 
incorrect. The difficulty appears to stem from the choice 
of symbols in Tadikamalla's presentation. 

Tadikamalla has presented the method for generating 
gamma variables in the following steps. 

Step 1. Set m = [a], the integer portion of a; set p 
= a - m, the fractional portion of a. 

Step 2. Generate m independent uniform deviates 
U1, U2, U3, . . . ,  Um and compute X = (-log(H?=1 
ui))(alm). 

Step 3. Generate another uniform deviate r. 
Step 4. If  r _< T(X) = (X/cO p exp(-p[(X/a)  - 1]), 

return X as the required gamma variate. Otherwise go to 
Step 2. 
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